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In this work, we expand methods from computationally-driven design of catalysts to 
designing substituted metal ferrites for applications in magnetically modulated energy 
delivery (MagMED). Specifically, computational catalysis involves using density 
functional theory (DFT) to calculate thermodynamic and kinetic quantities of chemical 
reactions as they occur over a handful of catalysts, i.e., materials that increase the rates of 
chemical reactions without being consumed, themselves. The thermodynamic and kinetic 
quantities are analyzed statistically in order to identify one or two “descriptors”. These 
descriptor quantities are well-correlated to all of the other thermodynamic and kinetic 
quantities and are used to construct “scaling relationships,” which are linear equations that 
take the descriptors as independent variables and produce as dependent variables estimates 
of the remaining thermodynamic and kinetic quantities. The scaling relationships are input 
to a microkinetic model, which combines the thermodynamic and kinetic quantities with 
models from statistical thermodynamics, in order to construct rate equations for the 
elementary steps. These are coupled with reactor design equations to produce a system of 
equations, which, when solved yields information about the catalytic rate. In computational 
catalyst design, the goal is to identify the optimal descriptor values, which maximize the 
rate and/or selectivity of the desired product. The material properties that control these 
optimal descriptor values can then be sought using a machine learning regression 
procedure. In this poster, we demonstrate the use of computationally-driven catalyst design 
of transition metal nanoparticle catalysts for n-butane selective oxidation to 1-butanol. We 
identify catalytic descriptors that optimize activity and selectivity for this reaction. Then, 
we discuss how machine learning can be used to determine the material and electronic 
properties (e.g., electronegativity, HOMO-LUMO gap) that dictate the descriptor values. 
Knowing this information aids in materials selection. Finally, we discuss our initial efforts 
at applying these same methods to identifying the correlation between composition and 
magnetic properties, specifically the magnetic moment and anisotropy, of substituted metal 
ferrites. The ultimate goal of this project is to learn how to tune the magnetic properties of 
substituted metal ferrites by altering their compositions. Ultimately, these rationally-
designed MagMED materials will be applied to treating disease. 
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