Thrust 2

Stimuli-Responsive Polymeric Materials

Overall Scientific Challenge

The overall challenge of Thrust 2 is to develop new generations of dynamic materials that can respond and adapt to external stimuli, leading to new knowledge and technological advances. Thrust 2 will develop sensing and self-healing polymeric materials that respond to environmental stimuli. These dynamic polymers will respond with macroscopic property changes resulting from chemical or physical structural reorganization including cleavage or restoration of chemical bonds, phase reorganization or conformational changes. Such advances will enable an array of applications, ranging from self-repairing polymers for structural applications, to new polymer-based sensors, to biomedical devices that release drugs or purify water. We will investigate stimuli important for applications such as thermal or electromagnetic radiation, environmental changes (solvent, pH, ionic strength, matrix), electrical or magnetic fields and mechanical stress.

Realizing the desired properties by the traditional route is slow because it relies on complex syntheses and specialized characterization. The top-to-bottom approach for the self-assembly of multicomponent and multiphase materials, such as block copolymers/nanoparticle systems, is an appealing alternative. To augment these approaches, we will utilize a multiscale computational modeling approach to design polymers and elucidate the fundamental principles governing these materials through an iterative loop involving synthesis, processing, characterization and modeling. This approach will improve the fundamental modeling and simulation capabilities by resolving cases where simulations and experimental results do not converge. The focus of the research will be on: (1) developing the next generation of self-repairing materials; and (2) developing principles governing functions and responses of molecular sensors. Both areas of research will have significant societal and technological impacts by implementing innovative solutions to energy, health, and homeland security sectors and transforming daily lives. Results from simulations will inform the design of second generation materials in advanced years of the project.


Publications (as of April 18, 2018)

  • Savchak, Mykhailo; Borodinov, Nikolay; Burtovyy, Ruslan; Anayee, Mark; Hu, Kesong; Ma, Ruilong; Grant, Anise; Li, Hongmei; Cutshall, Daniel B.; Wen, Yimei; Koley, Goutam; Harrell, William R.; Chumanov, George; Tsukruk, Vladimir; Luzinov, Igor (2018). Highly Conductive and Transparent Reduced Graphene Oxide Nanoscale Films via Thermal Conversion of Polymer-Encapsulated Graphene Oxide Sheets. ACS APPLIED MATERIALS INTERFACES. 10(4), 3975-3985
  • Fellows, Benjamin D.; Sandler, Sarah; Livingston, Jacob; Fuller, Kristin; Nwandu, Lotanna; Timmins, Sarah; Lantz, Kayla A.; Stefik, Morgan; Mefford, O. Thompson (2018). Extended LaMer Synthesis of Cobalt-Doped Ferrite. IEEE Magnetic Letters. 9.
  • Choudhury, Chandan; Tu, Sidong; Luzinov, Igor; Minko, Sergiy; Kuksenok, Olga (2018). Designing Highly Thermostable Lysozyme-Copolymer Conjugates: Focus on Effect of Polymer Concentration. Biomacromolecules. (in revisions)
  • Yang, Ying; Davidovich, Dmitriy; Hornat, Chris ; Urban, Marek; (2018). Leaf-Inspired Self-Healing Polymers. Chem. (submitted)

Conference Papers or Presentations (as of April 18, 2018)

  • Urban, Marek; Conference Presentation, Published, Quantitative Predictions of Shape Memory Effects in Polymers, 254th American Chemical Society National Meeting, 2017. Washington, DC
  • Urban, Marek; Conference Presentation, Published, Physico-Chemical Aspects of Self-Healable Polymers, Quantitative Predictions of Shape Memory Effects in Polymers, 254th American Chemical Society National Meeting, Washington, DC
  • Urban, Marek; Conference Presentation, Published, Self-Healable Polymers Recent Advances and the Future, 4th US Symposium on Advances in Polymer Science, MACROMEX 2017, 2017. Los Cabos, Mexico, Joint Mexican and American Chem. Society
  • Kuksenok, Olga; Conference Presentation, Published, Pattern Formation in Hydrogels: Controlling Functionality via Feedback Mechanisms, 2018 Spring Materials Research Society Meetings, 2018. Phoenix, AZ
  • Tu, Sidong; Choudhury, Chandan K.; Collins, Samantha; Yadavalli, Nataraja S.; Borodinov, Nikolay; Luzinov, Igor; Minko, Sergiy; Kuksenok, Olga; Conference Presentation, Engineering Highly Stable Enzyme-Polymer Conjugates: Molecular Dynamics Simulation Study Engineering Highly Stable Enzyme-Polymer Conjugates: Molecular Dynamics Simulation Study, Society For Biomaterials 2018 Annual Meeting and Exposition, 2018. Atlanta, GA
  • Palkar, Vaibhav (Kornev; Kuksenok); Conference Proceedings, Published, Theory for 3D Magnetic Rotational Spectroscopy of Complex Fluids, SEM 2018, 2018. Greenville, SC